
Effective OpenMP Implementations
Yuliana	Zamora	

SELF

High-level OpenMP is applied to three different software applications, with different
hardware. The speed-ups obtained by introducing high-level OpenMP compared to the
conventional approach in SELF is significant (up to 89% parallel efficiency). The
implementation of high-level OpenMP in HIGRAD and CLAMR demonstrates
comparable speed-ups to MPI (OpenMPI). The ability to use the same thread address
across child classes allows for these great speed-ups with minimal fundamental changes
in the original code. The current results on the KNL reveal that further testing and
configurations need to be implemented to see better speed-ups and equivalent results.

Conclusion & Future Work

OpenMP	 is	 a	 programming	 model	 to	 increase	 on	 node	 parallelism	 in	
applica3ons.	 It	 o6en	 comes	 under	 a8ack	 for	 poor	 performance	 compared	 to	
MPI	 everywhere.	 This	 is	 because	 OpenMP	 is	 conven3onally	 used	 at	 the	 loop	
level	 and	 thus	 suffers	 from	 high	 thread	 start	 up	 costs	 and	 thread	
synchroniza3ons.	 A	 higher-level	 implementa3on	 of	 OpenMP	 can	 reduce	 the	
typical	overhead	by	having	the	parallel	region	encompass	the	whole	main	 loop	
and	par33oning	the	child	loops	sta3cally.	We	apply	this	method	within	a	variety	
of	so6ware	applica3ons	(SELF,	HIGRAD,	CLAMR)	to	inves3gate	speed-ups	due	to	
reduc3ons	in	OpenMP	overhead,	thread	starts,	and	thread	wai3ng	3mes	by	the	
implementa3on	of	high-level	OpenMP.		
	

Abstract

Figure	2.	An	atmospheric	hydrodynamics	
model,	HIGRAD,	 is	 coupled	 to	 a	wildfire	
behavior	 model,	 FIRETEC,	 to	 produce	 a	
coupled	 atmosphere/wildfire	 behavior	
model	 based	 on	 conserva3on	 of	 mass,	
momentum,	 species,	 and	 energy.		
HIGRAD/FIRETEC	 is	 a	 three-dimensional	
t r a n s p o r t	 mod e l	 t h a t	 u s e s	 a	
compressible-gas	 formula3on	 to	
simula3on	 the	 coupling	 between	 wild	
land	 fire	 and	 mo3ons	 of	 the	 local	
atmosphere.	 Figure	and	 summary	 taken	
from	reference	[1].	

Figure	 3.	 CLAMR	 (Compute	 Language	
Adap3ve	 Mesh	 Refinement)	 is	 being	
developed	 as	 a	 DOE	 mini-app.	 CLAMR	 is	
being	 used	 to	 develop	 the	 computer	
science	 infrastructure	 needed	 for	 cell-
based	 adap3ve	 mesh	 refinement	 to	
effec3vely	 run	 on	 an	 Exascale	 class	
system.	As	a	simple	representa3ve	physics	
model,	 the	 shallow	 water	 equa3ons	 are	
used.	 This	 kind	 of	 physics	 model	 can	 be	
used	 to	 simulate	 tsunamis	 and	 many	
other	 water	 flows.[3]	 Figure	 taken	 from	
reference	[2].	

Figure	 5.	 Plot	 of	 high-level	 OpenMP	 speed-up	 compared	 to	 ideal	 speed-up	 and	
conven3onal	OpenMP	implementa3on.	

Figure	6.	Plot	of	high-level	OpenMP	speed-up	compared	 to	MPI	only.	High-level	OpenMP	
speedup	showing		an	85%	parallel	efficiency.	

Figure	8.	Intel’s	Knights	
landing	architecture		is	a	
many	core	processor.	The	
configura3on	we	are	using	
has	64	cores	with	4	threads	
each.	Figure	taken	from[4].		

Figure	 9.	Plot	 of	Higrad	on	 a	Quad-Cache	Mode	 configura3on	of	 a	 KNL	node	 showing	 comparable	
speed-up	to	MPI	only.	We	have	excellent	parallel	efficiency	up	to	16	rheads	and	working	at	further	
op3miza3on.	

HIGRAD

CLAMR

Figure	1.		
The	Spectral	Element	Libraries	in	Fortran	(SELF)	is	an	open-source	library	that	houses	
rou3nes	necessary	to	implement	spectral	element	methods.	The	shallow-water	solver	
(Dipole	example)	is	a	demonstra3on	of	the	SELF	applied	to	2-D	hyperbolic	
conserva3on	law	on	an	unstructured	mesh.		

Figure	7.	Plot	of	high-level	OpenMP	speed-up	compared	 to	MPI	only.	High-level	OpenMP	
speedup	showing		an	89%	parallel	efficiency.	

Mentors:	Robert	Robey	
																	Joseph	Schoonover	High Level OpenMP

Results

Figure	4.	Implementa3on	of	high-level	
OpenMP	using	4	threads		going	through	
two	subrou3nes.	Figure	shows	threads	are	
‘alive’	through	both	parallel	region	and	
serial	regions	of	the	code.	

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9
Sp

ee
d-

up
Threads

SELF- Dipole (OpenMP Comparison)

OpenMP
High-Level OpenMP
Ideal Speed-up

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9

Sp
ee

d-
up

Threads(OpenMP)/Process Count(MPI)

HIGRAD (MPI Comparison)

MPI
High-Level OpenMP
Ideal Speed-up

Results	Analogous	To	MPI	

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Sp
ee

d-
up

Threads(OpenMP)/Process Count(MPI)

CLAMR (MPI Comparison)

MPI
High-Level OpenMP
Ideal Speed-up Results	Analogous	To	MPI	

Parallel	Efficiency	Up	To	89%	

References:		
[1]	h8p://www.lanl.gov/orgs/ees/ees16/FIRETEC.shtml	
[2]	h8p://www.lanl.gov/projects/feynman-center/technologies/so6ware/clamr.php	
[3]Rebecca	Tumblin,	Peter	Ahrens,	Sara	Hartse,	Robert	W.	Robey	Parallel	Compact	Hash	Algorithms	for	Computa5onal	Meshes		SIAM	Journal	of	Scien3fic	Compu3ng	(Feb.	2015)	
[4]h8p://www.nextplalorm.com/2016/06/20/intel-knights-landing-yields-big-bang-buck-jump/	nkelman	G,	Uberuaga	BP,	Jonsson	H.	J.	Chem.	Phys.	113:9901-4	(2000)	

*Special	thanks	to	Joseph	Schoonover,	Jenniffer	
Estrada,	John	Lavesque,	Priscilla	Kelly,	Neelam	Patel	

Parallel	Efficiency	Up	To	88%	

Parallel	Efficiency	Up	To	85%	

LA-UR-16-25444	

Parallel	Efficiency	Up	To	90%	

0
10
20
30
40
50
60
70

0 10 20 30 40 50 60 70

Sp
ee

d-
up

Thread(OpenMP)/Process Count(MPI)

KNL - Higrad (MPI Comparison)
MPI

High-Level Openmp

IDEAL

Applications

Intel	Xeon	Phi	7230	Processor	(Knights	Landing)	Eight	Core	Intel	Xeon	SandyBridge	E5-2670		

